LIBERTY PAPER SET STD. 10 : Mathematics (Basic) [N-018(E)] Full Solution Time : 3 Hours ASSIGNTMENT PAPER 2 Section-A

1. (D) No solution **2.** (A) 16 **3.** (C) 44 **4.** (C) 5 **5.** (B) 45° **6.** (D) 2.88 **7.** 3 **8.** 6 **9.** 0.38 **10.** $\frac{AB}{AC}$ **11.** 2 **12.** 40 **13.** False **14.** True **15.** True **16.** False **17.** 4 **18.** 14 **19.** 1 **20.** 17.5 **21.** (c) $\frac{\pi r \theta}{180}$ **22.** (a) $2\pi r$ **23.** (c) 100π **24.** (a) 200π

Section-B

- **25.** Suppose the quadratic polynomial $ax^2 + bx + c$ of zeroes is α and β .
 - $\therefore \alpha + \beta = -3 \text{ and } \alpha\beta = 2$
 - $\therefore -\frac{b}{a} = \frac{-3}{1} \text{ and } \frac{c}{a} = \frac{2}{1}$ $\therefore a = 1, b = 3, c = 2$

So, one bionomial polynomial which fits the given conditions is $x^2 + 3x + 2$. You can check that any other bionomial polynomial that fits these conditions will be of the form $k(x^2 + 3x + 2)$, where k is real.

26.
$$4x^2 + 8x = 0$$

- $\therefore 4x (x + 2) = 0$ $\therefore 4x = 0 \text{ and } x + 2 = 0$ $\therefore x = 0 \text{ and } x = -2$
- **27.** $\therefore 2x^2 + 4x 3x 6 = 0$
 - $\therefore 2x(x+2) 3(x+2) = 0$
 - $\therefore (2x-3)(x+2) = 0$
 - $\therefore 2x 3 = 0 \text{OR} \qquad x + 2 = 0$
 - $\therefore 2x = 3 \qquad \text{OR} \qquad x = -2$

$$x = \frac{3}{2}$$

- \therefore The roots of this equation : -2, $\frac{3}{2}$
- **28.** 7, 13, 19,

So, here a = 7, d = 6, n = 20We have, an = a + (n - 1) d $\therefore a_{20} = 7 + (20 - 1) 6$ $\therefore a_{20} = 7 + 114$

 $\therefore a_{20} = 121$

29.
$$a = 0.6, d = 1.7 - 0.6 = 1.1, n = 100, S_n = S_{100} = ____SS_n = \frac{n}{2} [2a + (n - 1) d]$$

∴ S₁₀₀ = $\frac{100}{2} [2(0.6) + (100 - 1) (1.1)]$
= 50 [1.2 + 108.9]
= 50 (110.1)
∴ S₁₀₀ = 5505

30. Let the given points be A(a, b) & B(-a, -b)

:. AB =
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

= $\sqrt{(a + a)^2 + (b + b)^2}$
= $\sqrt{4a^2 + 4b^2} = 2\sqrt{a^2 + b^2}$

Thus, the distance between the given points is $2\sqrt{a^2+b^2}$.

31. Suppose, the line dividing the line segment AB connecting A (-1, 7) and B (4, -3) in the ratio $m_1 : m_2 = 2 : 3$ is P. The co-ordinate of point

$$P = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$
$$= \left(\frac{2(4) + 3(-1)}{2 + 3}, \frac{2(-3) + 3(7)}{2 + 3}\right)$$
$$= \left(\frac{8 - 3}{5}, \frac{-6 + 21}{5}\right)$$
$$= (1, 3)$$

Therefore, the co-ordinates of the required point are given by (1, 3).

32.
$$Cos A = \frac{5}{13}$$

In right angled \triangle ABC, \angle B = 90°

$$\therefore \frac{AB}{AC} = \frac{5}{13}$$

$$\therefore \frac{AB}{5} = \frac{AC}{13} = k, \quad k = \text{positive Real Number}$$

$$\therefore AB = 5k, AC = 13k$$

According to pythagoras,

$$BC^{2} = AC^{2} - AB^{2}$$

$$\therefore BC^{2} = (13k)^{2} - (5k)^{2}$$

$$\therefore BC^{2} = 169^{2} - 25k^{2}$$

$$\therefore BC^{2} = 144k^{2}$$

$$\therefore BC = 12k$$

$$\therefore sin A = \frac{BC}{AC} = \frac{12k}{13k} = \frac{12}{13} \text{ and}$$

$$tan A = \frac{BC}{AB} = \frac{12k}{5k} = \frac{12}{5}$$

33.
$$= \left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)$$
$$= \frac{3}{4} + \frac{1}{4}$$
$$= 1$$

34. Here, AB represents the tower, CB = 15m is the point from the tower and $\angle ACB$ is the angle of elevation = 60°.

ert

Now,
$$\tan 60^\circ = \frac{AB}{BC}$$

 $\therefore \sqrt{3} = \frac{AB}{15}$
 $\therefore AB = 15\sqrt{3} \text{ m}$

Hence, the height of the tower is $15\sqrt{3}$ m.

35. We have r = 7 cm and h = 24 cm

Now,
$$l = \sqrt{r^2 + h^2}$$

 $\therefore l = \sqrt{(7)^2 + (24)^2}$
 $\therefore l = \sqrt{49 + 576}$
 $\therefore l = \sqrt{625}$

$$\therefore l = 25 \text{ cm}$$

The surface area of the cone = $\pi r l$

$$= \frac{22}{7} \times 7 \times 23$$
$$= 550 \text{ cm}^2$$

36. Volume of hemisphere
$$= \frac{2}{3} \pi r^3$$
$$= \frac{2}{3} \times \frac{22}{7} \times 21 \times 21$$

$$= 19404 \text{ cm}^3$$

× 21

37. Median M = $l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$ = $60 + \left(\frac{\frac{53}{2} - 22}{7}\right) \times 10$ = $60 + \left(\frac{26.5 - 22}{7}\right) \times 10$ = $60 + \frac{4.5 \times 10}{7}$ = 60 + 6.43= 66.43

38. By the method of elimination,

3x + 4y = 10	(1)
2x - 2y = 2	(2)

multiply equation (1) by 1 and equation (2) by 2 and add

$$3x + 4y = 10$$
$$4x - 4y = 4$$
$$\therefore 7x = 14$$
$$\therefore x = 2$$

Put x = 2 in equation (1)

$$3x + 4y = 10$$

$$\therefore 3(2) + 4y = 10$$

$$\therefore 6 + 4y = 10$$

$$\therefore 4y = 4$$

$$\therefore y = 1$$

The solution of the equation : x = 2, y = 1

39.
$$\frac{3x}{2} - \frac{5y}{3} = -2$$

 $\therefore 9x - 10y = -12$
 $\therefore y = \frac{9x + 12}{10}$
 $\frac{x}{3} + \frac{y}{2} = \frac{13}{6}$
 $\therefore 2x + 3y = 13$
...(3)

Put value of equation (2) in equation (3)

$$2x + 3y = 13$$

$$\therefore 2x + 3\left(\frac{9x + 12}{10}\right) = 13$$

$$\therefore 2x + \frac{27x + 36}{10} = 13$$

$$\therefore 20x + 27x + 36 = 130$$

$$\therefore 20x + 27x = 130 - 36$$

$$\therefore 47x = 94$$

$$\therefore x = 2$$

Put x = 2 in equation (2),

$$y = \frac{9x + 12}{10}$$

$$\therefore y = \frac{9(2) + 12}{10} = \frac{18 + 12}{10} = \frac{30}{10} = 3$$

$$\therefore y = 3$$

Therefore, the solution is : x = 2, y = 3

40. Here, $S_{14} = 1050$, n = 14, a = 10Now, $S_n = \frac{n}{2} [2a + (n - 1)d]$ $\therefore S_{14} = \frac{14}{2} [2(10) + (14 - 1)d]$ $\therefore \frac{1050 \times 2}{14} = 20 + 13d$ $\therefore 13d = 130$ $\therefore d = 10$ Now, $a_{20} = a + 19d = 10 + (19 \times 10)$ = 10 + 190 = 200

Therefore, 20th term is 200.

- **41.** Suppose, the point P (x, y) is equidistant from A (3, 6) and B (-3, 4).
 - $\therefore PA = PB$ $\therefore PA^{2} = PB^{2}$ $\therefore (x - 3)^{2} + (y - 6)^{2} = (x + 3)^{2} + (y - 4)^{2}$ $\therefore x^{2} - 6x + 9 + y^{2} - 12y + 36$ $= x^{2} + 6x + 9 + y^{2} - 8y + 16$ $\therefore -6x - 12y + 36 = 6x - 8y + 16$ $\therefore -6x - 12y + 36 - 6x + 8y - 16 = 0$ $\therefore -12x - 4y + 20 = 0$ $\therefore 3x + y - 5 = 0$

Hence, the relation between x & y is 3x + y - 5 = 0.

42. Suppose, A (1, 2), B (4, y), C (x, 6) and D (3, 5) are the vertices of parallelogram ABCD.

Co-ordinates from the midpoint of the diagonal AC

= Co-ordinates from the midpoint the diagonal BD.

$$\therefore \left(\frac{1+x}{2}, \frac{2+6}{2}\right) = \left(\frac{4+3}{2}, \frac{y+5}{2}\right)$$

$$\therefore \frac{1+x}{2} = \frac{4+3}{2} , \frac{2+6}{2} = \frac{y+5}{2}$$

$$\therefore 1+x=7 , 8=y+5$$

$$\therefore x=7-1 , y=8-5$$

$$\therefore x=6 , y=3$$

43. Given : A circle with centre O, a point P lying outside the circle with two tangents PQ, PR on the circle from P. To prove : PQ = PR

Proof : Join OP, OQ and OR. Then \angle OQP and \angle ORP are right angles because these are angles between the radii and tangents and according to theorem 10.1 they are right angles.

Now, in right triangles OQP and ORP,OQ = OR(Radii of the same circle)OP = OP(Common) $\angle OQP = \angle ORP$ (Right angle)Therefore, $\triangle OQP \cong \triangle ORP$ (RHS)This gives, PQ = PR(CPCT)

Let the sides AB, BC, CD and DA of the quadrilateral ABCD touch the O centric circle at points P, Q, R and S respectively.

 $\therefore AP = AS$ BP = BQ CR = CQ DR = DS ...(1) ...(2) ...(3) ...(4)

C

Add equation (1), (2), (3) and (4)

AP + BP + CR + DR = AS + BQ + CQ + DS

- $\therefore (AP + BP) + (CR + DR) = (AS + DS) + (BQ + CQ)$
- $\therefore AB + CD = AD + BC$

45. Mode :

Here, maximum class frequency is 23 which belong to class interval 35-45.

- \therefore l = lower limit of modal class = 35
 - h = class size = 10
 - f_1 = frequency of modal class = 23
 - f_0 = frequency of class preceding the modal class = 21
 - f_2 = frequency of class succeeding the modal class = 14

Mode,
$$Z = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

 $\therefore Z = 35 + \left(\frac{23 - 21}{2(23) - 21 - 14}\right) \times 10$
 $\therefore Z = 35 + \frac{2 \times 10}{11}$
 $\therefore Z = 35 + 1.82$
 $\therefore Z = 36.82$ (Approx)

46. Total number of cards = 52

(i) Suppose event A is the king of red colour.

$$\therefore P(A) = \frac{\text{Number of king of red colour}}{\text{Total number of card}}$$
$$\therefore P(A) = \frac{2}{52} = \frac{1}{26}$$

(ii) Suppose event B is the slave of red colour.

$$\therefore P(B) = \frac{\text{Number of slave of red colour}}{\text{Total number of card}}$$
$$\therefore P(B) = \frac{2}{52} = \frac{1}{26}$$

(iii) Suppose event C is the card of club.

M

$$\therefore P(C) = \frac{\text{Number of card of club}}{\text{Total number of card}}$$
$$\therefore P(C) = \frac{13}{52} = \frac{1}{4}$$

Е

47.

D

В

Given: In ABC, a line parallel to side BC intersects AB and AC at D and E respectively.

С

To prove:
$$\frac{AD}{DB} = \frac{AE}{EC}$$

Proof : Join BE and CD and also draw DM \perp AC and EN \perp AB.

Then,
$$ADE = \frac{1}{2} \times AD \times EN$$
,
 $BDE = \frac{1}{2} \times DB \times EN$,
 $ADE = \frac{1}{2} \times AE \times DM$ and
 $DEC = \frac{1}{2} \times EC \times DM$.

$$\therefore \frac{ADE}{BDE} = \frac{\frac{1}{2} \times AD \times EN}{\frac{1}{2} \times DB \times EN} = \frac{AD}{DB} \qquad \dots (1)$$

and $\frac{ADE}{DEC} = \frac{\frac{1}{2} \times AE \times DM}{\frac{1}{2} \times EC \times DM} = \frac{AE}{EC} \qquad \dots (2)$

..... (1)

..... (2)

...(3)

Now, \triangle BDE and \triangle DEC are triangles on the same base DE and between the parallel BC and DE. then, BDE = DEC

Hence from eq^n . (1), (2) and (3),

$$\frac{AD}{DB} = \frac{AE}{EC}$$

48. It is given that $\frac{AM}{MB} = \frac{AN}{NC}$

 \therefore MN || BC (Theorem - 6.2)

 $\therefore \angle AMN = \angle ABC$ (corresponding angle)

Also it is given that, $\angle AMN = \angle ACB$

As per $eq^{n}(1)$ and (2)

$$\therefore \angle ACB = \angle ABC$$

 \therefore AB = AC (sides opposite the equal angles)

i.e., Δ ABC is an isosceles triangle.

49. Suppose, first number be *x*,

According the first condition,

second number + first number = 27

- \therefore second number + x = 27
- \therefore second number = 27 x

According to second condition,

First number \times second number = 182

$$x(27 - x) = 182$$

$$\therefore 27x - x^2 = 182$$

- $\therefore x^2 27x + 182 = 0$
- $\therefore x^2 13x 14x + 182 = 0$
- $\therefore x(x-13) 14 (x-13) = 0$
- $\therefore (x 13) (x 14) = 0$
- $\therefore x 13 = 0$ OR x 14 = 0
- $\therefore x = 13$ OR x = 14
- If x = 13 i.e. first number = 13
- then second number = 27 x
- = 27 13
- = 14 If first number = 14
- then, second number = 27 x= 27 - 14
 - = 13

50.
$$a = 17$$
, $a_n = l = 350$, $d = 9$, $n =$ ____, $S_n = a_n = a + (n - 1) d$
∴ $350 = 17 + (n - 1) 9$
∴ $350 - 17 = (n - 1) 9$
∴ $\frac{333}{9} = n - 1$
∴ $n - 1 = 37$
∴ $n = 38$
Now, $S_n = \frac{n}{2}(a + a_n)$
∴ $S_{38} = \frac{38}{2}(17 + 350)$
 $= 19(367)$
∴ $S_{38} = 6973$

51. Here we get the information as shown in the table below using a = 225 and h = 50 to use the deviation method.

	Daily expenditure (in ₹)	(f _i)	X _i	$\frac{u_i}{\frac{x_i - a}{h}}$	f _i u _i	
	100 - 150	4	125	- 2	- 8	
	150 – 200	5	175	- 1	- 5	
	200 – 250	12	225 = <i>a</i>	0	0	
	250 – 300	2	275	1	2	
	300 – 350	2	325	2	4	
	Total	$\Sigma f_i = 25$	-	-	$\Sigma f_i u_i = -7$	
I	Mean $\overline{x} = a +$ $\therefore \ \overline{x} = 225 +$ $\therefore \ \overline{x} = 225 -$	$\frac{\sum f_i u_i}{\sum f_i} \times h$ $-\frac{-7}{25} \times 50$ $\cdot 14$	Q	9		
	$\overline{x} = 211$					

So, mean daliy expenditure on food is ₹ 211.

52.

Weight (in kg)	Number of students (<i>fi</i>)	cf
40 – 45	2	2
45 — 50	3	5
50 – 55	8	13
55 – 60	6	19
60 – 65	6	25
65 – 70	3	28
70 – 75	2	30
	<i>n</i> = 30	

Here,
$$n = 30$$
 $\therefore \frac{n}{2} = \frac{30}{2} = 15$

:. Since the 15th observation is contained in class 55-60, the median class is 55-60.

= lower limit of median class = 55Then, l

cf = Cumulative frequency of class preceding the median class = 13

ert

= frequency of median class = 6f

`

= class size = 5h

Median M =
$$l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$$

 $\therefore M = 55 + \left(\frac{15 - 13}{6}\right) \times 5$
 $\therefore M = 55 + \frac{2 \times 5}{6}$
 $\therefore M = 55 + 1.67$

So, median weight is 56.67 kg.

- **53.** Total number of marbles = 5 + 8 + 7 = 20
 - (i) Suppose event A is not getting red marble.

i.e. getting white or green marbles.

$$\therefore P(A) = \frac{\text{Number of white and green marbles}}{\text{Total number of marbles}}$$

:
$$P(A) = \frac{8+7}{20} = \frac{15}{20} = \frac{3}{4}$$

(ii) Suppose event B is not getting white marble.

i.e. getting red or green marbles.

$$\therefore P(B) = \frac{\text{Number of red and green marbles}}{\text{Total number of marbles}}$$

:. P(B) =
$$\frac{5+7}{20} = \frac{12}{20} = \frac{3}{5}$$

(iii) Suppose event C is getting green marble.

$$\therefore P(C) = \frac{\text{Number of green marbles}}{\text{Total number of marbles}}$$
$$\therefore P(C) = \frac{7}{20}$$

(iv) Suppose event D is getting red and white marble.

$$\therefore P(D) = \frac{\text{Number of red and white marbles}}{\text{Total number of marbles}}$$
$$\therefore P(D) = \frac{5+8}{20} = \frac{13}{20}$$

54. A box contains 100 circular tablets which are numberd from 1 to 100.

- \therefore Total number of tablets = 100
- (i) Suppose event A of drawing a perfect square numbers.

(1, 4, 9, 16, 25, 36, 49, 64, 81, 100 = 10)

$$\therefore P(A) = \frac{\text{Total number of perfect square}}{\text{Total number of tablets}}$$

$$\therefore P(A) = \frac{10}{100} = \frac{1}{10} = 0.1$$

(ii) Suppose event B of drawing a perfect cube numbers.

$$(1, 8, 27, 64 = 4)$$

$$\therefore P(B) = \frac{\text{Total number of cube number}}{\text{Total number of tablets}}$$
$$\therefore P(B) = \frac{4}{100} = 0.04$$

(iii) Suppose event C of drawing a number divisible by 10

(10, 20, 30, 40, 50, 60, 70, 80, 90, 100 = 10) Total number of divisible by 10

$$\therefore P(C) = \frac{\text{Total number of divisible by 10}}{\text{Total number of tablets}}$$
$$\therefore P(C) = \frac{10}{100} = \frac{1}{10} = 0.1$$

(iv) Suppose event D of drawing three digit number

er

That is only 100

$$\therefore P(D) = \frac{1}{100} = 0.01$$